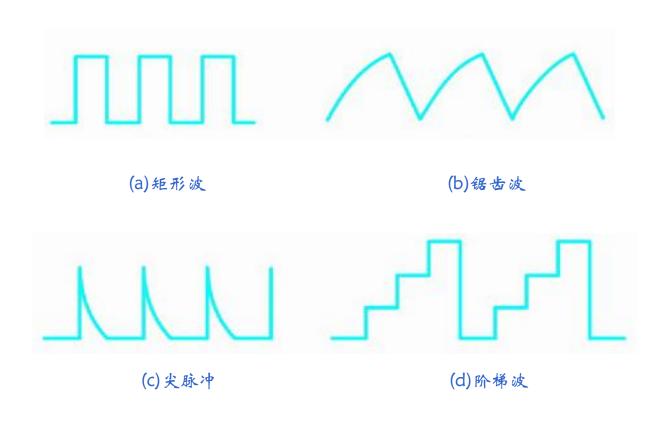
第一章 数字逻辑概论

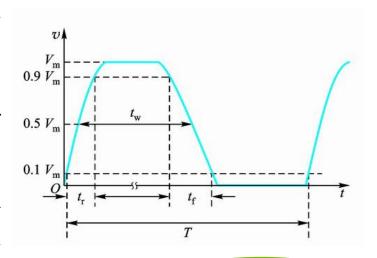
- ➡ 数字电路概述
- → 数制与数码
- → 逻辑门电路基础
- →本章小结

在电子技术中,被传递和处理的信号 可分为模拟信号和数字信号两大类。本章 之前所学的电路处理的是时间上和数值上 均是连续变化的模拟信号,属于模拟电路 的范畴。从第十章开始,所介绍的电路处 理的是时间上和数值上均是离散的、不连 续变化的脉冲数字信号,属于数字电路的 范畴。本章主要介绍数字电路的基础知识。

第一节 数字电路概述

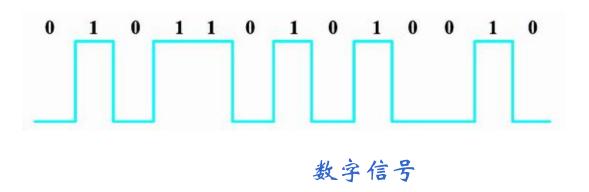

-、数字电路的特点

- 电路结构简单,工作简单稳定可靠。
- 数字电路抗干扰能力强。
- 可以进行逻辑运算和判断。
- 数字电路中元件处于开关状态,功耗较小。


由于数字电路具有上述特点,故发展十分迅速,在计算机、数字通信、自动控制、数字仪器及家用电器等技术领域中得到广泛的应用。

二、脉冲信号

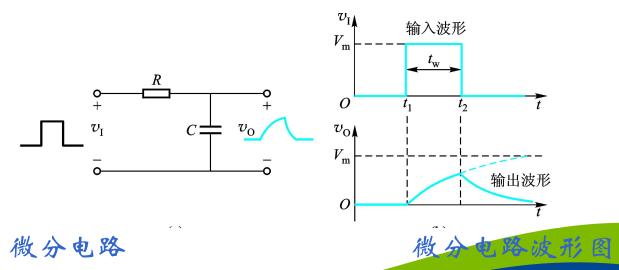
脉冲信号是指持续时间极短的电压或电流信号,常见的脉冲波形有:矩形波、锯齿波、尖脉冲、阶梯波等。


- 脉冲幅值 V_m 表示脉冲电压的最大值,其值等于脉冲底部至脉冲顶部之间的电位差。
- 脉冲上升时间 t_r 表示脉冲前沿从 $0.1V_m$ 上升到 $0.9V_m$ 所需的时间。
- 脉冲下降时间 $t_{\rm f}$ 表示脉冲后沿从 $0.9V_{\rm m}$ 下降到0.1Vm所需的时间。
- 脉冲宽度 $t_{\rm w}$ 由脉冲前沿 $0.5V_{\rm m}$ 到脉冲后沿 $0.5V_{\rm m}$ 之间的时间。
- 脉冲周期T 对于周期性脉冲,脉冲周期指相邻两脉冲波对应点之间的间隔时间,其倒数为脉冲的频率f,即 $f = \frac{1}{T}$ 。
- 称为占空比,即 $D = \frac{t_w}{T}$

矩形脉冲主要参数

三、数字信号

通常把脉冲的出现或消失用 1和 0来表示,这样一串脉冲就变成由一串1和 0组成的代码,这种信号称为数字信号。

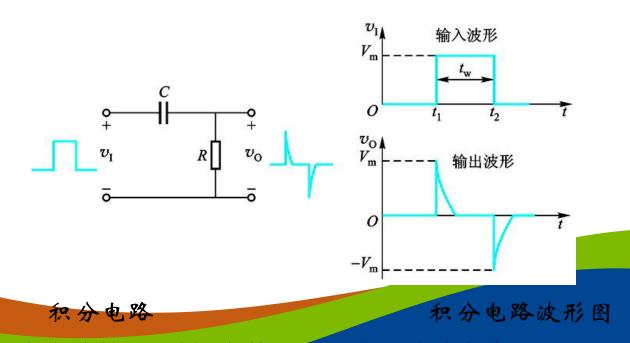

需注意的是数字信号的0和1并不表示数量的大小,而是代表电路的工作状态,如开关、二极管、三极管导通用1状态表示;反之,器件截止时就用0状态表示。

若规定高电平(3~5V)为逻辑1,低电平(0~0.4V)为逻辑0,称为正逻辑。 反之,若规定高电平为逻辑0,低电平为逻辑1,则称为负逻辑。

第二节 RC电路的应用

一、RC 微分电路

RC微分电路是一种常用的波形变换电路,能够将矩形脉冲波变换成尖脉冲。通常用来作为触发器、计数器、开关电路的触发信号。


RC微分电路的输出波形要形成尖脉冲必须具备以下条件:电路的时间常数 $\tau=RC$ 应远小于矩形波脉冲宽度 t_w ,即 $\tau \ll t_w$ 。

通常, 当 $\tau \leq t_{w}$ 时, 可以认为满足条件。

二、RC 积分电路

RC积分电路也是一种常用的波形变换电路,它可以把矩形波变换成锯齿波。

RC积分电路通常用来作为数字电路的延时器、定时器的定时元件,在电视机中可利用积分电路从复合行、场同步信号中取出场同步脉冲。

积分电路要求电路的RC 时间常数 τ 应远大于脉冲宽度 t_w ,即 τ 》 t_w 通常,当 $\tau \ge 3t_w$ 时,可以认为满足条件。

第三节 数制与码制

一、数制

选取一定的进位规则,用多位数码来表示某个数的值,这就是所谓的数制。

1. 十进制数

十进制数有0,1,2,3,4,5,6,7,8,9共十个符号,我们称这些符号为数码。十进制数运算加法时遵循"逢十进一",减法时遵循"借一当十"。

十进制数中,数码的位置不同,所表示的值就不相同,分个位、十位、百位...,如:

(N) $_{10}=k_{n-1}\times 10^{n-1}+k_{n-2}\times 10^{n-2}+...+k_1\times 10^1+k_0\times 10^0+k_{-1}\times 10^{-1}+k_{-2}\times 10^{-2}+...$

十进制数用数学式表示的通式为:

2. 二进制数

二进制数仅有0和1两个不同的数码。进位规则为"逢二进一";借位规则为"借一当二"。对于任意一个二进制数可表示为:

(N)
$$_{2}=k_{n-1}\times 2^{n-1}+k_{n-2}\times 2^{n-2}+...+k_{1}\times 2^{1}+k_{0}\times 2^{0}+k_{-1}\times 2^{-1}+k_{-2}\times 2^{-2}+...$$

例如,二进制数(10110.1) $_2$ =1×2⁴+0×2³+1×2²+1×2¹+0×2⁰+1×2⁻¹

3. 十六进制

十六进制是"逢十六进一",十六进制有0、1、2、3、4、5、6、7、8、9、A、B、C、D、E、F共16个不同的数码。 例如,十六进制数 $(3AE)_{16} = 3 \times 16^2 + A \times 16^1 + E \times 16^0$

$$=3\times16^{2}+10\times16^{1}+14\times16^{0}$$

与十进制对应的二进制、十六进制

十进制数	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
二进制数	-0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
十六进制数	0	1	2	3	4	5	6	7	8	9	A	В	С	D	Е	F

4. 不同数制的转换

(1) 二进制数转换为十进制数 转换方法是: 把二进制数按权展开,再把每一位的位值相加,即可得到相应的十进制数。

例题 将二进制(101)2转化为十进制数。

$$(101)_2 = 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 = (5)_{10}$$

(2)十进制整数转换为二进制数 转换方法是: 把十进制数 逐次地用2除取余数,一直除到商数为零。然后将先取出的余数作为二进数的最低位数码。

例题 将十进制数19转化为二进制数

(3) 二进制数转换为十六进制数 转换方法是: 把每四位进制数用对应的十六进制数表示。

例题 将(11010110101.1100101)2转换为十六进制数。

解: 二进制数 0110 1011 0101 . 1100 1010

十六进制数 6 B 5 . C A

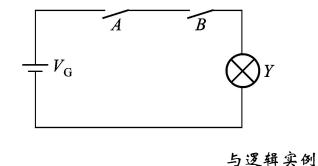
即(011010110101.11001010)₂=(6B5.CA)₁₆

(4) 十六进制数转换为二进制数 转换方法是: 将每个十六进制数用四位二进制数表示。

例题 将十六进制数(7E6AD)16转化为二进制数。

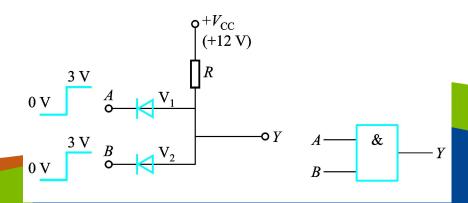
解: (7E6AD)₁₆=(0111 1110 0110 1010 1101)₂

二、码制


用于表示十进制数的二进制代码称为二一十进制代码(Binary Coded Decimal) 简称为BCD码。常用的BCD码有: 8421码、5421码、余3码等。

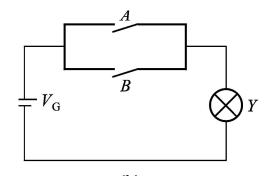
十进制	8421码	5421码	余3码
0	0000	0000	0011
1	0001	0001	0100
2	0010	0010	0101
3	0011	0011	0110
4	0100	0100	0111
5	0101	1000	1000
6	0110	1001	1001
7	0111	1010	1010
8	1000	1011	1011
9	1001	1100	1100

第四节 逻辑门电路基础


能实现一定逻辑功能的电路称为逻辑门电路。

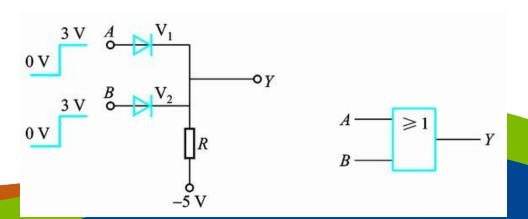
- 一、基本逻辑门
- 与逻辑门
- (1) 与逻辑关系 $Y=A\cdot B$

(2) 二极管与门电路


"全1出1,有0出0"

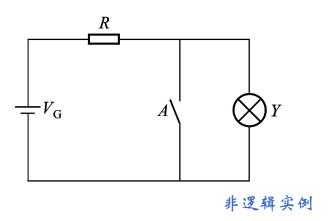
2. 或逻辑门

(1) 或逻辑关系

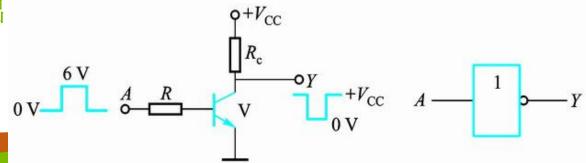

$$Y=A+B$$

或逻辑实例

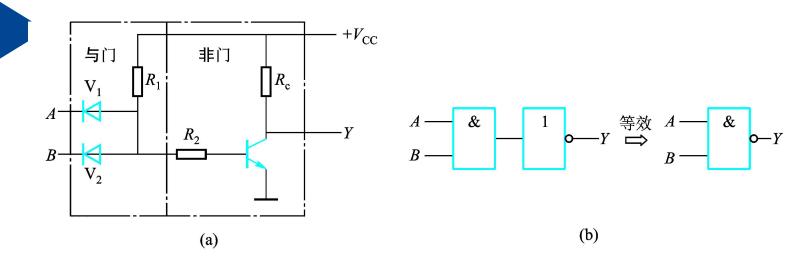
(2) 二极管或门电路


"有1出1,全0出0"

3. 非逻辑门

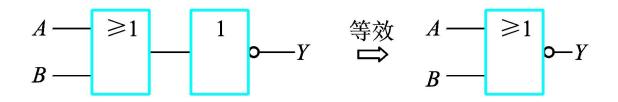

(1) 非逻辑关系

$$Y = A$$


(2) 三极管非门电路

"入0出1,入1出

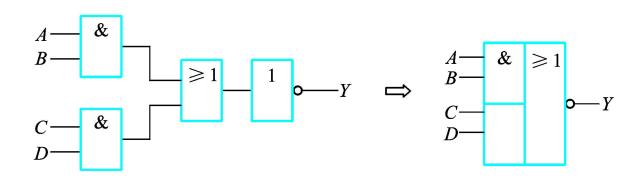
二、复合逻辑门


1. 与非门

与非门的逻辑函数式为 "有0出1,全1出0"。 . 其逻辑工

2 或非门

在或门后串联非门就构成或非门,如图所示。

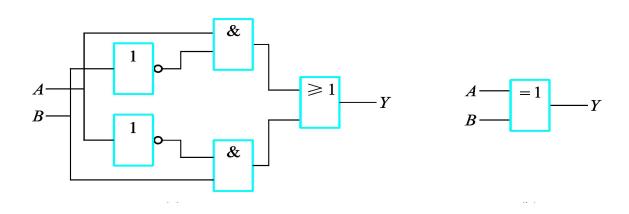


或非门逻辑结构及电路符号

或非门的逻辑函数式为 $\mathbb{Z} = A + \mathbb{Z}$,其逻辑功能可归纳为"有1出0,全0出1"

3. 与或非门

与或非的逻辑结构图及电路符号如下图所示。



与或非门逻辑结构及电路符号

与或非门的逻辑函数式为 Y = AB + CD,其逻辑功能为: 当输入端的任何一组全1时,输出为0;任何一组输入都至少有一个为0时,输出端才能为1。

4. 异或门

异或门的逻辑结构与电路符号如下图所示。

异或门逻辑结构及电路符号

其逻辑函数表达式为X = AB + AB ,其逻辑功能为: 当两个输入端的一端为0,另一个为1时,输出为1;而两个输入端均为0或均为1时,输出为0。

李章小结

- 数字电子技术是有关数字信号的产生、整形、编码、存储、 计数和传输的科学技术。由脉冲组成的数码称为数字信号。脉 冲的主要参数有幅度、上升时间、下降时间、脉冲宽度、脉冲 周期等。
- 2. 数的进制有十进制、二进制和十六进制等, 在数字电路中主要用二进制数。
- 4. 基本逻辑门电路有:与门、或门、非门三种,由基本门组成复合门有:与非门、或非门、与或非门和异或门等,它们是构成各种数字电路的基本单元。